In this paper, we propose a novel cross-trees structure to perform the nonlocal cost aggregation strategy, and the cross-trees structure consists of a horizontal-tree and a vertical-tree. Compared to other spanning trees, the significant superiorities of the cross-trees are that the trees' constructions are efficient and the trees are exactly unique since the constructions are independent on any local or global property of the image itself. Additionally, two different priors: edge prior and superpixel prior, are proposed to tackle the false cost aggregations which cross the depth boundaries. Hence, our method contains two different algorithms in terms of cross-trees+prior. By traversing the two crossed trees successively, a fast non-local cost aggregation algorithm is performed twice to compute the aggregated cost volume. Performance evaluation on the 27 Middlebury data sets shows that both our algorithms outperform the other two tree-based non-local methods, namely minimum spanning tree (MST) and segment-tree (ST).
Cross-trees, Edge and Superpixel Priors-based Cost aggregation for Stereo matching.
阅读:4
作者:Cheng Feiyang, Zhang Hong, Sun Mingui, Yuan Ding
| 期刊: | Pattern Recognition | 影响因子: | 7.600 |
| 时间: | 2015 | 起止号: | 2015 Jul 1; 48(7):2269-2278 |
| doi: | 10.1016/j.patcog.2015.01.002 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
