Normal estimation is a crucial first step for numerous light detection and ranging (LiDAR) data-processing algorithms, from building reconstruction, road extraction, and ground-cover classification to scene rendering. For LiDAR point clouds in urban environments, this paper presents a robust method to estimate normals by constructing an octree-based hierarchical representation for the data and detecting a group of large enough consistent neighborhoods at multiscales. Consistent neighborhoods are mainly determined based on the observation that an urban environment is typically comprised of regular objects, e.g., buildings, roads, and the ground surface, and irregular objects, e.g., trees and shrubs; the surfaces of most regular objects can be approximatively represented by a group of local planes. Even in the frequent presence of heavy noise and anisotropic point samplings in LiDAR data, our method is capable of estimating robust normals for kinds of objects in urban environments, and the estimated normals are beneficial to more accurately segment and identify the objects, as well as preserving their sharp features and complete outlines. The proposed method was experimentally validated both on synthetic and real urban LiDAR datasets, and was compared to state-of-the-art methods.
Robust Normal Estimation for 3D LiDAR Point Clouds in Urban Environments.
阅读:3
作者:Zhao Ruibin, Pang Mingyong, Liu Caixia, Zhang Yanling
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2019 | 起止号: | 2019 Mar 12; 19(5):1248 |
| doi: | 10.3390/s19051248 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
