Dynamic response force control of electrohydraulic servo actuator of active suspension based on intelligent optimization algorithm.

阅读:3
作者:Guo Qinghe, Wang Mengchao, Liu Renjun, Chen Yurong, Wang Shenghuai, Wang Hongxia
Traditional PID control faces challenges in addressing parameter uncertainty and nonlinearity in active suspension electrohydraulic servo actuators, leading to suboptimal performance. To address these challenges, a fractional-order PID (FOPID) controller optimization method based on the Multi-Strategy Improved Beluga Whale Optimization (MSIBWO) algorithm is proposed. Simulation results in MATLAB/Simulink demonstrate that the MSIBWO-FOPID controller significantly outperforms traditional PID and BWO-FOPID controllers in force tracking and robustness. For step input, the rise time and the root mean square error(RMSE) are reduced by 66.7[Formula: see text] and 70.3[Formula: see text], respectively, compared to BWO-FOPID. For sine inputs, the system achieves better disturbance rejection and higher precision. Using a half-car model, the MSIBWO-FOPID controller improves ride comfort significantly. Under random road excitation, the RMSE values of the vehicle body's vertical acceleration and pitch angle acceleration are reduced by 51.7[Formula: see text] and 13.1[Formula: see text], respectively, compared to passive suspension, outperforming both PID and BWO-FOPID controllers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。