Analysis of spatial patterns of disease is a significant field of research. However, access to unit-level disease data can be difficult for privacy and other reasons. As a consequence, estimates of interest are often published at the small area level as disease maps. This motivates the development of methods for analysis of these ecological estimates directly. Such analyses can widen the scope of research by drawing more insights from published disease maps or atlases. The present study proposes a hierarchical Bayesian meta-analysis model that analyses the point and interval estimates from an online atlas. The proposed model is illustrated by modelling the published cancer incidence estimates available as part of the online Australian Cancer Atlas (ACA). The proposed model aims to reveal patterns of cancer incidence for the 20 cancers included in ACA in major cities, regional and remote areas. The model results are validated using the observed areal data created from unit-level data on cancer incidence in each of 2148 small areas. It is found that the meta-analysis models can generate similar patterns of cancer incidence based on urban/rural status of small areas compared with those already known or revealed by the analysis of observed data. The proposed approach can be generalized to other online disease maps and atlases.
Augmenting disease maps: a Bayesian meta-analysis approach.
阅读:3
作者:Jahan Farzana, Duncan Earl W, Cramb Susanna M, Baade Peter D, Mengersen Kerrie L
| 期刊: | Royal Society Open Science | 影响因子: | 2.900 |
| 时间: | 2020 | 起止号: | 2020 Aug 5; 7(8):192151 |
| doi: | 10.1098/rsos.192151 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
