Infrared array sensor-based fall detection and activity recognition systems have gained momentum as promising solutions for enhancing healthcare monitoring and safety in various environments. Unlike camera-based systems, which can be privacy-intrusive, IR array sensors offer a non-invasive, reliable approach for fall detection and activity recognition while preserving privacy. This work proposes a novel method to distinguish between normal motion and fall incidents by analyzing thermal patterns captured by infrared array sensors. Data were collected from two subjects who performed a range of activities of daily living, including sitting, standing, walking, and falling. Data for each state were collected over multiple trials and extended periods to ensure robustness and variability in the measurements. The collected thermal data were compared with multiple statistical distributions using Earth Mover's Distance. Experimental results showed that normal activities exhibited low EMD values with Beta and Normal distributions, suggesting that these distributions closely matched the thermal patterns associated with regular movements. Conversely, fall events exhibited high EMD values, indicating greater variability in thermal signatures. The system was implemented using a Raspberry Pi-based stand-alone device that provides a cost-effective solution without the need for additional computational devices. This study demonstrates the effectiveness of using IR array sensors for non-invasive, real-time fall detection and activity recognition, which offer significant potential for improving healthcare monitoring and ensuring the safety of fall-prone individuals.
An Approach to Fall Detection Using Statistical Distributions of Thermal Signatures Obtained by a Stand-Alone Low-Resolution IR Array Sensor Device.
阅读:11
作者:Newaz Nishat Tasnim, Hanada Eisuke
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jan 16; 25(2):504 |
| doi: | 10.3390/s25020504 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
