Video-Based Identification and Prediction Techniques for Stable Vessel Trajectories in Bridge Areas.

阅读:6
作者:Luo Woqin, Xia Ye, He Tiantao
In recent years, the global upswing in vessel-bridge collisions underscores the vital need for robust vessel track identification in accident prevention. Contemporary vessel trajectory identification strategies often integrate target detection with trajectory tracking algorithms, employing models like YOLO integrated with DeepSORT or Bytetrack algorithms. However, the accuracy of these methods relies on target detection outcomes and the imprecise boundary acquisition method results in erroneous vessel trajectory identification and tracking, leading to both false positives and missed detections. This paper introduces a novel vessel trajectory identification framework. The Co-tracker, a long-term sequence multi-feature-point tracking method, accurately tracks vessel trajectories by statistically calculating the translation and heading angle transformation of feature point clusters, mitigating the impact of inaccurate vessel target detection. Subsequently, vessel trajectories are predicted using a combination of Long Short-Term Memory (LSTM) and a Graph Attention Neural Network (GAT) to facilitate anomaly vessel trajectory warnings, ensuring precise predictions for vessel groups. Compared to prevalent algorithms like YOLO integrated with DeepSORT, our proposed method exhibits superior accuracy and captures crucial heading angle features. Importantly, it effectively mitigates the common issues of false positives and false negatives in detection and tracking tasks. Applied in the Three Rivers area of Ningbo, this research provides real-time vessel group trajectories and trajectory predictions. When the predicted trajectory suggests potential entry into a restricted zone, the system issues timely audiovisual warnings, enhancing real-time alert functionality. This framework markedly improves vessel traffic management efficiency, diminishes collision risks, and ensures secure navigation in multi-target and wide-area vessel scenarios.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。