Knowledge or rule-based approaches are needed for quality assessment and assurance in professional or crowdsourced geographic data. Nevertheless, many types of geographic knowledge are statistical in nature and are therefore difficult to derive rules that are meaningful for this purpose. The rules of continuity and symmetry considered in this paper can be thought of as two concrete forms of the first law of geography, which may be used to formulate quality measures at the individual level without referring to ground truth. It is not clear, however, how much the rules can be faithful. Hence, the main objective is to test if the rules are consistent with street network data over the world. Specifically, for the rule of continuity we identify natural streets that connect smoothly in a network, and measure the spatial order of information (e.g. names, highway level, speed, etc.) along the streets. The measure is based on spatial auto-correlation indicators adapted for one dimension. For the rule of symmetry, we device an algorithm that recognize parallel road pairs (e.g. dual carriageways), and examine to what extent attributes in the pairs are identical. The two rules are tested against 28 cities selected from OpenStreetMap data worldwide; two professional data sets are used to show more insights. We found that the rules are consistent with street networks from a wide range of cities of different characteristics, and also noted cases with varying degrees of agreement. As a side-effect, we discussed possible limitations of the autocorrelation indicators used, where cautions are needed when interpreting the results. In addition, we present techniques that performed the tests automatically, which can be applied to new data to further verify (or falsify) our findings, or extended as quality assurance tools to detect data items that do not satisfy the rules and to suggest possible corrections according to the rules.
On the rules of continuity and symmetry for the data quality of street networks.
阅读:4
作者:Zhang Xiang, Yin Weijun, Huang Shouqian, Yu Jianwei, Wu Zhongheng, Ai Tinghua
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Jul 12; 13(7):e0200334 |
| doi: | 10.1371/journal.pone.0200334 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
