Multi-scale fusion framework via retinex and transmittance optimization for underwater image enhancement.

阅读:8
作者:Li Tie, Zhou Tianfei
Low contrast, poor color saturation, and turbidity are common phenomena of underwater sensing scene images obtained in highly turbid oceans. To address these problems, we propose an underwater image enhancement method by combining Retinex and transmittance optimized multi-scale fusion framework. Firstly, the grayscale of R, G, and B channels are quantized to enhance the image contrast. Secondly, we utilize the Retinex color constancy to eliminate the negative effects of scene illumination and color distortion. Next, a dual transmittance underwater imaging model is built to estimate the background light, backscattering, and direct component transmittance, resulting in defogged images through an inverse solution. Finally, the three input images and corresponding weight maps are fused in a multi-scale framework to achieve high-quality, sharpened results. According to the experimental results and image quality evaluation index, the method combined multiple advantageous algorithms and improved the visual effect of images efficiently.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。