Downregulation of miR-497-5p Improves Sepsis-Induced Acute Lung Injury by Targeting IL2RB.

阅读:4
作者:Lou Wei, Yan Jieping, Wang Weisi
INTRODUCTION: Acute lung injury (ALI) induced by sepsis is a process related to inflammatory reactions, which involves lung cell apoptosis and production of inflammatory cytokine. Here, lipopolysaccharide (LPS) was applied to stimulate the mouse or human normal lung epithelial cell line (BEAS-2B) to construct a sepsis model in vivo and in vitro, and we also investigated the effect of miR-497-5p on sepsis-induced ALI. Material and Methods. Before LPS treatment, miR-497-5p antagomir was injected intravenously into mice to inhibit miR-497-5p expression in vivo. Similarly, miR-497-5p was knocked down in BEAS-2B cells. Luciferase reporter assay was applied to predict and confirm the miR-497-5p target gene. Cell viability, apoptosis, the levels of miR-497-5p, IL2RB, SP1, inflammatory cytokine, and lung injury were assessed. RESULTS: In BEAS-2B cells, a significant increase of apoptosis and inflammatory cytokine was shown after LPS stimulation. In septic mice, increased inflammatory cytokine production and apoptosis in lung cells and pulmonary morphological abnormalities were shown. The miR-497-5p inhibitor transfection showed antiapoptotic and anti-inflammatory effects on BEAS-2B cells upon LPS stimulation. In septic mice, the miR-497-5p antagomir injection also alleviated ALI, apoptosis, and inflammation caused by sepsis. The downregulation of IL2RB in BEAS-2B cells reversed the protective effects of the miR-497-5p inhibitor against ALI. CONCLUSION: In conclusion, downregulation of miR-497-5p reduced ALI caused by sepsis through targeting IL2RB, indicating the potential effect of miR-497-5p for improving ALI caused by sepsis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。