The vast majority of people living with human immunodeficiency virus type 1 (HIV-1) have pain syndrome, which has a significant impact on their quality of life. The underlying causes of HIV-1-associated pain are not likely attributable to direct viral infection of the nervous system due to the lack of evidence of neuronal infection by HIV-1. However, HIV-1 proteins are possibly involved as they have been implicated in neuronal damage and death. The current study assesses the direct effects of HIV-1 Tat, one of potent neurotoxic viral proteins released from HIV-1-infected cells, on the excitability and survival of rat primary dorsal root ganglion (DRG) neurons. We demonstrated that HIV-1 Tat triggered rapid and sustained enhancement of the excitability of small-diameter rat primary DRG neurons, which was accompanied by marked reductions in the rheobase and resting membrane potential (RMP), and an increase in the resistance at threshold (R(Th)). Such Tat-induced DRG hyperexcitability may be a consequence of the inhibition of cyclin-dependent kinase 5 (Cdk5) activity. Tat rapidly inhibited Cdk5 kinase activity and mRNA production, and roscovitine, a well-known Cdk5 inhibitor, induced a very similar pattern of DRG hyperexcitability. Indeed, pre-application of Tat prevented roscovitine from having additional effects on the RMP and action potentials (APs) of DRGs. However, Tat-mediated actions on the rheobase and R(Th) were accelerated by roscovitine. These results suggest that Tat-mediated changes in DRG excitability are partly facilitated by Cdk5 inhibition. In addition, Cdk5 is most abundant in DRG neurons and participates in the regulation of pain signaling. We also demonstrated that HIV-1 Tat markedly induced apoptosis of primary DRG neurons after exposure for longer than 48 h. Together, this work indicates that HIV-1 proteins are capable of producing pain signaling through direct actions on excitability and survival of sensory neurons.
Direct effects of HIV-1 Tat on excitability and survival of primary dorsal root ganglion neurons: possible contribution to HIV-1-associated pain.
阅读:3
作者:Chi Xianxun, Amet Tohti, Byrd Daniel, Chang Kuei-Hua, Shah Kavita, Hu Ningjie, Grantham Ayslinn, Hu Sishun, Duan Jianhong, Tao Feng, Nicol Grant, Yu Qigui
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2011 | 起止号: | 2011;6(9):e24412 |
| doi: | 10.1371/journal.pone.0024412 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
