Human neurodevelopment is a highly regulated biological process. In this article, we study the dynamic changes of neurodevelopment through the analysis of human brain microarray data, sampled from 16 brain regions in 15 time periods of neurodevelopment. We develop a two-step inferential procedure to identify expressed and unexpressed genes and to detect differentially expressed genes between adjacent time periods. Markov Random Field (MRF) models are used to efficiently utilize the information embedded in brain region similarity and temporal dependency in our approach. We develop and implement a Monte Carlo expectation-maximization (MCEM) algorithm to estimate the model parameters. Simulation studies suggest that our approach achieves lower misclassification error and potential gain in power compared with models not incorporating spatial similarity and temporal dependency.
A MARKOV RANDOM FIELD-BASED APPROACH TO CHARACTERIZING HUMAN BRAIN DEVELOPMENT USING SPATIAL-TEMPORAL TRANSCRIPTOME DATA.
阅读:3
作者:Lin Zhixiang, Sanders Stephan J, Li Mingfeng, Sestan Nenad, State Matthew W, Zhao Hongyu
| 期刊: | Annals of Applied Statistics | 影响因子: | 1.400 |
| 时间: | 2015 | 起止号: | 2015 Mar;9(1):429-451 |
| doi: | 10.1214/14-AOAS802 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
