BACKGROUND: Propolis holds great potential in therapeutic development due to the presence of flavonoids, phenolic acids, and esters. However, its chemical composition has restricted its solubility and bioaccessibility. Here, we synthesized responsive Iranian propolis nanoparticles derived from 3 distinct regions of Iran, representing the first comparative investigation of their anticancer effects against AGS gastric cancer cells. METHODS: Propolis was collected from 3 different regions of Iran. Iranian propolis extract (IPE) was prepared using Bosio method. Quantitative and qualitative analyses were performed. Using the probe sonication, Iranian propolis nanoparticles (IPNs) were prepared. Identification tests of IPNs were performed with dynamic light scattering (DLS)-Zetasizer methods. Next, the anticancer potential of IPNs was analyzed by measuring the cell survival rate on the AGS gastric cancer cell line by MTT assay. Also, the IPNs apoptotic activity was evaluated using Annexin V/FITC-propidium iodide (PI) flow cytometry. RESULTS: Analysis of the IPE showed the presence of paracoumaric acid and caffeic acid predominantly. An average IPNs size was obtained from 8 to 15 nm with good stability and cellular uptake. Compared with IPE, IPNs showed a greater effect on AGS gastric cancer cell survival inhibition after 24 and 48 h. The IC50 values of cancer cells treated with IPE and IPNs were calculated as 76.55 and 43.26 µg/ml for 24 h and 63.26 and 12.14 µg/ml for 48 h respectively. The flow cytometry results showed that the apoptosis induced by IPNs was greater than the control cells. CONCLUSIONS: Our study indicated that the IPNs can be more effective than IPE in reducing AGS cell viability and increasing apoptosis. These results suggest the potential of IPNs as low-toxicity nanocarriers for gastric cancer therapy, although further in vivo studies are required to validate their therapeutic potential and assess their pharmacokinetic properties.
Anti-Gastric Cancer Activity of Mixed-Region Iranian Propolis Nanoparticles: Potential Therapeutic Applications.
阅读:4
作者:Aravand Sara, Esfahani Azam J, Gheibi Nematollah, Khoei Saeideh G, Dibazar Shaghayegh P, Zolghadr Leila, Ahmadpour Yazdi Hossein
| 期刊: | Current Therapeutic Research-Clinical and Experimental | 影响因子: | 1.500 |
| 时间: | 2025 | 起止号: | 2025 Jul 16; 103:100806 |
| doi: | 10.1016/j.curtheres.2025.100806 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
