Here, we show that cultured Purkinje cells from inositol 1,4,5-trisphosphate receptor type 1 knock-out (IP3R1KO) mice exhibited abnormal dendritic morphology. Interestingly, despite the huge amount of IP3R1 expression in Purkinje cells, IP3R1 in granule cells, not in the Purkinje cells, was responsible for the shape of Purkinje cell dendrites. We also found that BDNF application rescued the dendritic abnormality of IP3R1KO Purkinje cells, and that the increase in BDNF expression in response to activation of AMPA receptor (AMPAR) and metabotropic glutamate receptor (mGluR) was impaired in IP3R1KO cerebellar granule cells. In addition, we observed abnormalities in the dendritic morphology of Purkinje cells and in the ultrastructure of parallel fiber-Purkinje cell (PF-PC) synapses in IP3R1KO mice in vivo. We concluded that activation of AMPAR and mGluR increases BDNF expression through IP3R1-mediated signaling in cerebellar granule cells, which contributes to the dendritic outgrowth of Purkinje cells intercellularly, possibly by modifying PF-PC synaptic efficacy.
Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production.
阅读:7
作者:Hisatsune Chihiro, Kuroda Yukiko, Akagi Takumi, Torashima Takashi, Hirai Hirokazu, Hashikawa Tsutomu, Inoue Takafumi, Mikoshiba Katsuhiko
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2006 | 起止号: | 2006 Oct 18; 26(42):10916-24 |
| doi: | 10.1523/JNEUROSCI.3269-06.2006 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
