Investigating the evolution of Escherichia coli in microgravity offers valuable insights into microbial adaptation to extreme environments. Here the effects of simulated microgravity (SµG) on gene expression and genome evolution of E. coli REL606, a strain evolved terrestrially for 35 years, is explored. The transcriptomic changes for glucose-limited and glucose-replete conditions over 24 h illustrate that SµG increased the expression of genes involved in stress response, biofilm, and metabolism. A greater number of differentially expressed genes related to the general stress response (GSR) and biofilm formation is observed in simulated microgravity cultures under glucose-limited conditions in comparison to glucose-replete conditions. Longer term SµG culture under glucose-limited conditions led to the accumulation of unique mutations when compared to control cultures, particularly in the mraZ/fruR intergenic region and the elyC gene, suggesting changes in peptidoglycan and enterobacterial common antigen (ECA) production. These findings highlight the physiological and genomic adaptations of E. coli to microgravity, offering a foundation for future research into the long-term effects of space conditions on bacterial evolution.
Simulated microgravity triggers a membrane adaptation to stress in E. coli REL606.
阅读:6
作者:Lozzi Brittney, Adepoju Lea, Espinoza Josh L, Padgen Michael, Parra Macarena, Ricco Antonio, Castro-Wallace Sarah, Barrick Jeffrey E, O'Rourke Aubrie
| 期刊: | BMC Microbiology | 影响因子: | 4.200 |
| 时间: | 2025 | 起止号: | 2025 Jun 9; 25(1):362 |
| doi: | 10.1186/s12866-025-04064-7 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
