Feature Detection of Non-Cooperative and Rotating Space Objects through Bayesian Optimization.

阅读:3
作者:Kabir Rabiul Hasan, Bai Xiaoli
In this paper, we propose a Bayesian Optimization (BO)-based strategy using the Gaussian Process (GP) for feature detection of a known but non-cooperative space object by a chaser with a monocular camera and a single-beam LIDAR in a close-proximity operation. Specifically, the objective of the proposed Space Object Chaser-Resident Assessment Feature Tracking (SOCRAFT) algorithm is to determine the camera directional angles so that the maximum number of features within the camera range is detected while the chaser moves in a predefined orbit around the target. For the chaser-object spatial incentive, rewards are assigned to the chaser states from a combined model with two components: feature detection score and sinusoidal reward. To calculate the sinusoidal reward, estimated feature locations are required, which are predicted by Gaussian Process models. Another Gaussian Process model provides the reward distribution, which is then used by the Bayesian Optimization to determine the camera directional angles. Simulations are conducted in both 2D and 3D domains. The results demonstrate that SOCRAFT can generally detect the maximum number of features within the limited camera range and field of view.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。