Butorphanol is hypothesized to induce analgesia via opioid pathways, although the precise mechanisms for its effects remain unknown. In this study, we investigated the role of the mu-opioid receptor (MOP) in thermal, mechanical, and visceral chemical antinociception induced by butorphanol using MOP knockout (KO) mice. Butorphanol-induced thermal antinociception, assessed by the hot-plate and tail-flick tests, was significantly reduced in heterozygous and abolished in homozygous MOP-KO mice compared with wildtype mice. The results obtained from our butorphanol-induced mechanical antinociception experiments, assessed by the Randall-Selitto test, were similar to the results obtained from the thermal antinociception experiments in these mice. Interestingly, however, butorphanol retained its ability to induce significant visceral chemical antinociception, assessed by the writhing test, in homozygous MOP-KO mice. The butorphanol-induced visceral chemical antinociception that was retained in homozygous MOP-KO mice was completely blocked by pretreatment with nor-binaltorphimine, a kappa-opioid receptor (KOP) antagonist. In vitro binding and cyclic adenosine monophosphate assays also showed that butorphanol possessed higher affinity for KOPs and MOPs than for delta-opioid receptors. These results molecular pharmacologically confirmed previous studies implicating MOPs, and partially KOPs, in mediating butorphanol-induced analgesia.
Abolished thermal and mechanical antinociception but retained visceral chemical antinociception induced by butorphanol in mu-opioid receptor knockout mice.
阅读:5
作者:Ide Soichiro, Minami Masabumi, Ishihara Kumatoshi, Uhl George R, Satoh Masamichi, Sora Ichiro, Ikeda Kazutaka
| 期刊: | Neuropharmacology | 影响因子: | 4.600 |
| 时间: | 2008 | 起止号: | 2008 Jun;54(8):1182-8 |
| doi: | 10.1016/j.neuropharm.2008.03.008 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
