Network Anomaly Intrusion Detection Based on Deep Learning Approach.

阅读:5
作者:Wang Yung-Chung, Houng Yi-Chun, Chen Han-Xuan, Tseng Shu-Ming
The prevalence of internet usage leads to diverse internet traffic, which may contain information about various types of internet attacks. In recent years, many researchers have applied deep learning technology to intrusion detection systems and obtained fairly strong recognition results. However, most experiments have used old datasets, so they could not reflect the latest attack information. In this paper, a current state of the CSE-CIC-IDS2018 dataset and standard evaluation metrics has been employed to evaluate the proposed mechanism. After preprocessing the dataset, six models-deep neural network (DNN), convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), CNN + RNN and CNN + LSTM-were constructed to judge whether network traffic comprised a malicious attack. In addition, multi-classification experiments were conducted to sort traffic into benign traffic and six categories of malicious attacks: BruteForce, Denial-of-service (DoS), Web Attacks, Infiltration, Botnet, and Distributed denial-of-service (DDoS). Each model showed a high accuracy in various experiments, and their multi-class classification accuracy were above 98%. Compared with the intrusion detection system (IDS) of other papers, the proposed model effectively improves the detection performance. Moreover, the inference time for the combinations of CNN + RNN and CNN + LSTM is longer than that of the individual DNN, RNN and CNN. Therefore, the DNN, RNN and CNN are better than CNN + RNN and CNN + LSTM for considering the implementation of the algorithm in the IDS device.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。