The measurement of the Earth's Outgoing Longwave Radiation plays a key role in climate change monitoring. This measurement requires a compact wide-field-of-view camera, covering the 8-14 µm wavelength range, which is not commercially available. Therefore, we present a novel thermal wide-field-of-view camera optimized for space applications, featuring a field of view of 140° to image the Earth from limb to limb, while enabling a high spatial resolution of 4.455 km at nadir. Our cost-effective design comprises three germanium lenses, of which only one has a single aspherical surface. It delivers a very good image quality, as shown by the nearly-diffraction-limited performance. Radiative transfer simulations indicate excellent performance of our camera design, enabling an estimate of the broadband Outgoing Longwave Radiation with a random relative error of 4.8%.
Wide-Field-of-View Longwave Camera for the Characterization of the Earth's Outgoing Longwave Radiation.
阅读:4
作者:Schifano Luca, Smeesters Lien, Berghmans Francis, Dewitte Steven
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2021 | 起止号: | 2021 Jun 29; 21(13):4444 |
| doi: | 10.3390/s21134444 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
