Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives.

阅读:3
作者:An Feifei, Chen Ting, Stéphanie Djabou Mouafi Astride, Li Kaimian, Li Qing X, Carvalho Luiz J C B, Tomlins Keith, Li Jun, Gu Bi, Chen Songbi
Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。