BACKGROUND: Red pitaya (Hylocereus polyrhizus) or known as buah naga merah in Malay belongs to the cactus family, Cactaceae. Red pitaya has been shown to give protection against liver damage and may reduce the stiffness of the heart. Besides, the beneficial effects of red pitaya against obesity have been reported; however, the mechanism of this protection is not clear. Therefore, in the present study, we have investigated the red pitaya-targeted genes in obesity using high-carbohydrate, high-fat diet-induced metabolic syndrome rat model. METHODS: A total of four groups were tested: corn-starch (CS), corn-starchâ+âred pitaya juice (CRP), high-carbohydrate, high-fat (HCHF) and high-carbohydrate, high-fatâ+âred pitaya juice (HRP). The intervention with 5 % red pitaya juice was continued for 8 weeks after 8 weeks initiation of the diet. Retroperitoneal, epididymal and omental fat pads were collected and weighed. Plasma concentration of IL-6 and TNF-α were measured using commercial kits. Gene expression analysis was conducted using RNA extracted from liver samples. A total of eighty-four genes related to obesity were analyzed using PCR array. RESULTS: The rats fed HCHF-diet for 16 weeks increased body weight, developed excess abdominal fat deposition and down-regulated the expression level of IL-1α, IL-1r1, and Cntfr as compared to the control group. Supplementation of red pitaya juice for 8 weeks increased omental and epididymal fat but no change in retroperitoneal fat was observed. Red pitaya juice reversed the changes in energy balance homeostasis in liver tissues by regulation of the expression levels of Pomc and Insr. The increased protein expression levels of IL-6 and TNF-α in HCHF group and red pitaya treated rats confirmed the results of gene expression. CONCLUSION: Collectively, this study revealed the usefulness of this diet-induced rat model and the beneficial effects of red pitaya on energy balance homeostasis by modulating the anorectic, orexigenic and energy expenditure related genes.
Red pitaya juice supplementation ameliorates energy balance homeostasis by modulating obesity-related genes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.
阅读:4
作者:Ramli Nurul Shazini, Ismail Patimah, Rahmat Asmah
| 期刊: | BMC Complementary and Alternative Medicine | 影响因子: | 3.400 |
| 时间: | 2016 | 起止号: | 2016 Jul 26; 16:243 |
| doi: | 10.1186/s12906-016-1200-3 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
