In this paper, we propose a context-aware multi-scale aggregation network named CMSNet for dense crowd counting, which effectively uses contextual information and multi-scale information to conduct crowd density estimation. To achieve this, a context-aware multi-scale aggregation module (CMSM) is designed. Specifically, CMSM consists of a multi-scale aggregation module (MSAM) and a context-aware module (CAM). The MSAM is used to obtain multi-scale crowd features. The CAM is used to enhance the extracted multi-scale crowd feature with more context information to efficiently recognize crowds. We conduct extensive experiments on three challenging datasets, i.e., ShanghaiTech, UCF_CC_50, and UCF-QNRF, and the results showed that our model yielded compelling performance against the other state-of-the-art methods, which demonstrate the effectiveness of our method for congested crowd counting.
Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting.
阅读:3
作者:Huang Liangjun, Shen Shihui, Zhu Luning, Shi Qingxuan, Zhang Jianwei
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Apr 22; 22(9):3233 |
| doi: | 10.3390/s22093233 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
