The development of efficient parallelization strategies for numerical simulation methods of fluid, gas and plasma mechanics remains one of the key technology challenges in modern scientific computing. The numerical models of gas and plasma dynamics based on the Navier-Stokes and electrodynamics equations require enormous computational efforts. For such cases, the use of parallel and distributed computing proved to be effective. The Grid computing environment could provide virtually unlimited computational resources and data storage, convenient task launch and monitoring tools, graphical user interfaces such as web portals and visualization systems. However, the deployment of traditional CFD solvers in the Grid environment remains very limited because basically it requires the cluster computing architecture. This study explores the applicability of distributed computing and Grid technologies for solving the weak-coupled problems of fluid, gas and plasma mechanics, including techniques of flow separation control like using plasma actuators to influence boundary layer structure. The adaptation techniques for the algorithms of coupled computational fluid dynamics and electrodynamics problems for distributed computations on grid and cloud infrastructure are presented. A parallel solver suitable for the Grid infrastructure has been developed and the test calculations in the distributed computing environment are performed. The simulation results for partially ionized separated flow behind the circular cylinder are analysed. Discussion includes some performance metrics and parallelization effectiveness estimation. The potential of the Grid infrastructure to provide a powerful and flexible computing environment for fast and efficient solution of weak-coupled problems of fluid, gas and plasma mechanics has been shown.
An efficient parallelization technique for the coupled problems of fluid, gas and plasma mechanics in the grid environment.
阅读:5
作者:Zinchenko Andrii, Fernandez-Gamiz Unai, Redchyts Dmytro, Gorna Olga, Bilousova Tetiana
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Mar 13; 15(1):8629 |
| doi: | 10.1038/s41598-025-91695-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
