Tuning of parameters is a very important but complex issue in the Evolutionary Algorithms' design. The paper discusses the new, based on the Fuzzy Logic concept of tuning mutation size in these algorithms. Data on evolution collected in prior generations are used to tune the size of mutations. A Fuzzy Logic Part uses this historical data to improve the algorithm's convergence to a global optimum. The Fuzzy Logic Part keeps a desirable relation of exploration and exploitation, so the algorithm's resistance to getting stuck in a local optimum is improved too. Several tests on Function Optimization Problems were performed to prove the suitability of the proposed method. A set of data and functions with different difficulties, recommended in the commonly used benchmarks are used for experiments. The results of these experiments suggest that the proposed method is efficient and could be used for a wide range of similar problems of optimization.
Fuzzy logic applied to tunning mutation size in evolutionary algorithms.
阅读:5
作者:Pytel, Krzysztof
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 14; 15(1):1937 |
| doi: | 10.1038/s41598-025-86349-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
