Enhanced Cartilage Regeneration: Chemical, Mechanical, and In Vitro Analysis of Innovative TiO(2)-Reinforced PVA Implants.

阅读:3
作者:B Y Santosh Kumar, Isloor Arun M, Mohan Kumar G C, Prashanth Srirangam, Penupolu Anoop
This study focuses on developing a synthetic, biocompatible graft for treating cartilage lesions. One-dimensional titanium dioxide nanotubes (TNTs) were incorporated into poly(vinyl alcohol) (PVA) hydrogel and processed using freeze-drying without chemical surfactants. Upon optimization of the composition, it was found that the incorporation of TNT altered the biomechanical properties without causing any adverse physiological effects. Annealing treatment further enhanced mechanical strength and energy dissipation, promoting elasticity. The hydrogel with 2 wt % TNT achieved maximum mechanical strength and the storage modulus values indicated elastic dominance, and biotribological tests showed cartilage-like frictional response via hydrodynamic lubrication. Against the microorganisms Escherichia coli, Staphylococcus aureus, and Candida albicans, grafts showed significant antimicrobial activity. In vitro experiments demonstrated that these nanocomposite hydrogels supported adhesion, proliferation, and upregulation of cartilage-specific gene expression in human mesenchymal stem cells hMSCs. This suggests potential for promoting hMSC chondrogenic differentiation and accelerating cartilage regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。