Predicting the health status of lithium-ion batteries is crucial for ensuring safety. The prediction process typically requires inputting multiple time series, which exhibit temporal dependencies. Existing methods for health status prediction fail to uncover both coarse-grained and fine-grained temporal dependencies between these series. Coarse-grained analysis often overlooks minor fluctuations in the data, while fine-grained analysis can be overly complex and prone to overfitting, negatively impacting the accuracy of battery health predictions. To address these issues, this study developed a Hybrid-grained Evolving Aware Graph (HEAG) model for enhanced prediction of lithium-ion battery health. In this approach, the Fine-grained Dependency Graph (FDG) helps us model the dependencies between different sequences at individual time points, and the Coarse-grained Dependency Graph (CDG) is used for capturing the patterns and magnitudes of changes across time series. The effectiveness of the proposed method was evaluated using two datasets. Experimental results demonstrate that our approach outperforms all baseline methods, and the efficacy of each component within the HEAG model is validated through the ablation study.
Enhancing Lithium-Ion Battery Health Predictions by Hybrid-Grained Graph Modeling.
阅读:4
作者:Xing Chuang, Liu Hangyu, Zhang Zekun, Wang Jun, Wang Jiyao
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Jun 27; 24(13):4185 |
| doi: | 10.3390/s24134185 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
