A lightweight infrared image denoising method based on adversarial transfer learning is proposed. The method adopts a generative adversarial network (GAN) framework and optimizes the model through a phased transfer learning strategy. In the initial stage, the generator is pre-trained using a large-scale grayscale visible light image dataset. Subsequently, the generator is fine-tuned on an infrared image dataset using feature transfer techniques. This phased transfer strategy helps address the problem of insufficient sample quantity and variety in infrared images. Through the adversarial process of the GAN, the generator is continuously optimized to enhance its feature extraction capabilities in environments with limited data. Moreover, the generator structure incorporates structural reparameterization technology, edge convolution modules, and progressive multi-scale attention block (PMAB), significantly improving the model's ability to recognize edge and texture features. During the inference stage, structural reparameterization further optimizes the network architecture, significantly reducing model parameters and complexity and thereby improving denoising efficiency. The experimental results of public and real-world datasets demonstrate that this method effectively removes additive white Gaussian noise from infrared images, showing outstanding denoising performance.
Lightweight Infrared Image Denoising Method Based on Adversarial Transfer Learning.
阅读:3
作者:Guo Wen, Fan Yugang, Zhang Guanghui
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2024 | 起止号: | 2024 Oct 17; 24(20):6677 |
| doi: | 10.3390/s24206677 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
