Kernel-based geographically and temporally weighted autoregressive model for house price estimation.

阅读:4
作者:Shim Jooyong, Hwang Changha
Spatiotemporal nonstationarity and autocorrelation are two crucial points in modeling geographical data. Previous studies have demonstrated that geographically and temporally weighted autoregressive (GTWAR) model accounts for both spatiotemporal nonstationarity and autocorrelation simultaneously to estimate house prices. Therefore, this paper proposes a kernel-based GTWAR (KBGTWAR) model by incorporating the basic principle of support vector machine regression into spatially and temporally varying coefficients model. The efficacy of KBGTWAR model is demonstrated through a case study on housing prices in the city of Shenzhen, China, from year 2004 to 2008. Comparing the existing models, KBGTWAR model obtains the lowest value for the residual sum of squares (RSS) and the highest value for the coefficient of determination R2. Moreover, KBGTWAR model improves the goodness of fit of the existing GTWAR model from 12.0 to 4.5 in terms of RSS, from 0.914 to 0.968 in terms of R2 and from 3.84 to 4.45 in terms of F-statistic. The results show that KBGTWAR model provides a comparatively high goodness of fit and sufficient explanatory power for both spatiotemporal nonstationarity and autocorrelation. The results of this study demonstrate that the proposed KBGTWAR model can be used to effectively formulate polices for real estate management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。