In traffic surveillance systems, accurate camera-LiDAR calibration is critical for effective detection and robust environmental recognition. Due to the significant distances at which sensors are positioned to cover extensive areas and minimize blind spots, the calibration search space expands, increasing the complexity of the optimization process. This study proposes a novel target-less calibration method that leverages dynamic objects, specifically, moving vehicles, to constrain the calibration search range and enhance accuracy. To address the challenges of the expanded search space, we employ a genetic algorithm-based optimization technique, which reduces the risk of converging to local optima. Experimental results on both the TUM public dataset and our proprietary dataset indicate that the proposed method achieves high calibration accuracy, which is particularly suitable for traffic surveillance applications requiring wide-area calibration. This approach holds promise for enhancing sensor fusion accuracy in complex surveillance environments.
Camera-LiDAR Wide Range Calibration in Traffic Surveillance Systems.
阅读:9
作者:Jang Byung-Jin, Kim Taek-Lim, Park Tae-Hyoung
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Feb 6; 25(3):974 |
| doi: | 10.3390/s25030974 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
