A sudden cardiac event in patients with heart disease can lead to a heart attack in extreme cases. Therefore, prompt interventions for the particular heart situation and periodic monitoring are critical. This study focuses on a heart sound analysis method that can be monitored daily using multimodal signals acquired with wearable devices. The dual deterministic model-based heart sound analysis is designed in a parallel structure that uses two bio-signals (PCG and PPG signals) related to the heartbeat, enabling more accurate heart sound identification. The experimental results show promising performance of the proposed Model III (DDM-HSA with window and envelope filter), which had the highest performance, and S1 and S2 showed average accuracy (unit: %) of 95.39 (±2.14) and 92.55 (±3.74), respectively. The findings of this study are anticipated to provide improved technology to detect heart sounds and analyze cardiac activities using only bio-signals that can be measured using wearable devices in a mobile environment.
DDM-HSA: Dual Deterministic Model-Based Heart Sound Analysis for Daily Life Monitoring.
阅读:3
作者:Lee Miran, Wei Qun, Lee Soomin, Park Heejoon
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Feb 22; 23(5):2423 |
| doi: | 10.3390/s23052423 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
