Target Recognition of SAR Images via Matching Attributed Scattering Centers with Binary Target Region.

阅读:6
作者:Tan Jian, Fan Xiangtao, Wang Shenghua, Ren Yingchao
A target recognition method of synthetic aperture radar (SAR) images is proposed via matching attributed scattering centers (ASCs) to binary target regions. The ASCs extracted from the test image are predicted as binary regions. In detail, each ASC is first transformed to the image domain based on the ASC model. Afterwards, the resulting image is converted to a binary region segmented by a global threshold. All the predicted binary regions of individual ASCs from the test sample are mapped to the binary target regions of the corresponding templates. Then, the matched regions are evaluated by three scores which are combined as a similarity measure via the score-level fusion. In the classification stage, the target label of the test sample is determined according to the fused similarities. The proposed region matching method avoids the conventional ASC matching problem, which involves the assignment of ASC sets. In addition, the predicted regions are more robust than the point features. The Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset is used for performance evaluation in the experiments. According to the experimental results, the method in this study outperforms some traditional methods reported in the literature under several different operating conditions. Under the standard operating condition (SOC), the proposed method achieves very good performance, with an average recognition rate of 98.34%, which is higher than the traditional methods. Moreover, the robustness of the proposed method is also superior to the traditional methods under different extended operating conditions (EOCs), including configuration variants, large depression angle variation, noise contamination, and partial occlusion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。