Recently, attention has been paid to the convolutional neural network (CNN) based synthetic aperture radar (SAR) target recognition method. Because of its advantages of automatic feature extraction and the preservation of translation invariance, the recognition accuracies are stronger than traditional methods. However, similar to other deep learning models, CNN is a "black-box" model, whose working process is vague. It is difficult to locate the decision reasons. Because of this, we focus on the process analysis of a pre-trained CNN model. The role of the processing to feature extraction and final recognition decision is discussed. The discussed components of CNN models are convolution, activation function, and full connection. Here, the convolution processing can be deemed as image filtering. The activation function provides a nonlinear element of processing. Moreover, the fully connected layers can also further extract features. In the experiment, four classical CNN models, i.e., AlexNet, VGG16, GoogLeNet, and ResNet-50, are trained by public MSTAR data, which can realize ten-category SAR target recognition. These pre-trained CNN models are processing objects of the proposed process analysis method. After the analysis, the content of the SAR image target features concerned by these pre-trained CNN models is further clarified. In summary, we provide a paradigm to process the analysis of pre-trained CNN models used for SAR target recognition in this paper. To some degree, the adaptability of these models to SAR images is verified.
The Process Analysis Method of SAR Target Recognition in Pre-Trained CNN Models.
阅读:8
作者:Zheng Tong, Li Jin, Tian Hao, Wu Qing
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Jul 17; 23(14):6461 |
| doi: | 10.3390/s23146461 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
