Direct cAMP signaling through G-protein-coupled receptors mediates growth cone attraction induced by pituitary adenylate cyclase-activating polypeptide.

阅读:3
作者:Guirland Carmine, Buck Kenneth B, Gibney Jean A, DiCicco-Bloom Emanuel, Zheng James Q
Developing axons are guided to their appropriate targets by environmental cues through the activation of specific receptors and intracellular signaling pathways. Here we report that gradients of pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide widely expressed in the developing nervous system, induce marked attraction of Xenopus growth cones in vitro. PACAP exerted its chemoattractive effects through PAC1, a PACAP-selective G-protein-coupled receptor (GPRC) expressed at the growth cone. Furthermore, the attraction depended on localized cAMP signaling because it was completely blocked either by global elevation of intracellular cAMP levels using forskolin or by inhibition of protein kinase A using specific inhibitors. Moreover, local direct elevation of intracellular cAMP by focal photolysis of caged cAMP compounds was sufficient to induce growth cone attraction. On the other hand, blockade of Ca2+, phospholipase C, or phosphatidyl inositol-3 kinase signaling pathways did not affect PACAP-induced growth cone attraction. Finally, PACAP-induced attraction also involved the Rho family of small GTPases and required local protein synthesis. Taken together, our results establish cAMP signaling as an independent pathway capable of mediating growth cone attraction induced by a physiologically relevant peptide acting through GPCRs. Such a direct cAMP pathway could potentially operate in other guidance systems for the accurate wiring of the nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。