A toxin-antitoxin system provides phage defense via DNA damage and repair.

阅读:12
作者:Pu Huan, Chen Yuxin, Zhao Xinjun, Dai Lunzhi, Tong Aiping, Tang Dongmei, Chen Qiang, Yu Yamei
Widespread in bacteria and archaea, toxin-antitoxin (TA) systems have been recently demonstrated to function in phage defense. Here we characterize the anti-phage function of a type IV TA system, ShosTA. Using structural and biochemical approaches, we show that ShosT couples phosphoribosyltransferase and pyrophosphatase activities to disrupt purine metabolism, resulting in DNA duplication, cell filamentation and ultimate cell death. ShosA binds DNA and likely recruits other proteins to facilitate DNA homologous recombination to antagonize ShosT's toxicity. We identify Gp0.7 of T7 phage as a trigger for ShosTA system via shutting off the protein synthesis, and the C-terminus-mediated intrinsic instability of ShosA releases the toxicity of the existing ShosT proteins. Collectively, our results provide a novel toxin-antitoxin mechanism for anti-phage immunity and shed light on the triggering of this TA system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。