Coating and Corruption of Human Neutrophils by Bacterial Outer Membrane Vesicles.

阅读:3
作者:du Teil Espina Marines, Fu Yanyan, van der Horst Demi, Hirschfeld Claudia, López-Álvarez Marina, Mulder Lianne M, Gscheider Costanza, Haider Rubio Anna, Huitema Minke, Becher Dörte, Heeringa Peter, van Dijl Jan Maarten
Porphyromonas gingivalis is a keystone oral pathogen that successfully manipulates the human innate immune defenses, resulting in a chronic proinflammatory state of periodontal tissues and beyond. Here, we demonstrate that secreted outer membrane vesicles (OMVs) are deployed by P. gingivalis to selectively coat and activate human neutrophils, thereby provoking degranulation without neutrophil killing. Secreted granule components with antibacterial activity, especially LL-37 and myeloperoxidase (MPO), are subsequently degraded by potent OMV-bound proteases known as gingipains, thereby ensuring bacterial survival. In contrast to neutrophils, the P. gingivalis OMVs are efficiently internalized by macrophages and epithelial cells. Importantly, we show that neutrophil coating is a conserved feature displayed by OMVs of at least one other oral pathogen, namely, Aggregatibacter actinomycetemcomitans. We conclude that P. gingivalis deploys its OMVs for a neutrophil-deceptive strategy to create a favorable inflammatory niche and escape killing. IMPORTANCE Severe periodontitis is a dysbiotic inflammatory disease that affects about 15% of the adult population, making it one of the most prevalent diseases worldwide. Importantly, periodontitis has been associated with the development of nonoral diseases, such as rheumatoid arthritis, pancreatic cancer, and Alzheimer's disease. Periodontal pathogens implicated in periodontitis can survive in the oral cavity only by avoiding the insults of neutrophils while at the same time promoting an inflamed environment where they successfully thrive. Our present findings show that outer membrane vesicles secreted by the keystone pathogen Porphyromonas gingivalis provide an effective delivery tool of virulence factors that protect the bacterium from being killed while simultaneously activating human neutrophils.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。