A multi-tissue longitudinal proteomics study to evaluate the suitability of post-mortem samples for pathophysiological research.

阅读:4
作者:Beusch Christian M, Braesch-Andersen Ken, Felldin Ulrika, Sabatier Pierre, Widgren Anna, Bergquist Jonas, Grinnemo Karl-Henrik, Rodin Sergey
Recent developments in mass spectrometry-based proteomics have established it as a robust tool for system-wide analyses essential for pathophysiological research. While post-mortem samples are a critical source for these studies, our understanding of how body decomposition influences the proteome remains limited. Here, we have revisited published data and conducted a clinically relevant time-course experiment in mice, revealing organ-specific proteome regulation after death, with only a fraction of these changes linked to protein autolysis. The liver and spleen exhibit significant proteomic alterations within hours post-mortem, whereas the heart displays only modest changes. Additionally, subcellular compartmentalization leads to an unexpected surge in proteome alterations at the earliest post-mortem interval (PMI). Additionally, we have conducted a comprehensive analysis of semi-tryptic peptides, revealing distinct consensus motifs for different organs, indicating organ-specific post-mortem protease activity. In conclusion, our findings emphasize the critical importance of considering PMI effects when designing proteomics studies, as these effects may significantly overshadow the impacts of diseases. Preferably, the samples should be taken in the operation room, especially for studies including subcellular compartmentalization or trans-organ comparison. In single-organ studies, the planning should involve careful control of PMI.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。