Salmonella enterica Serovars Dublin and Enteritidis Comparative Proteomics Reveals Differential Expression of Proteins Involved in Stress Resistance, Virulence, and Anaerobic Metabolism.

阅读:4
作者:Martinez-Sanguiné A Y, D'Alessandro B, Langleib M, Traglia G M, Mónaco A, Durán R, Chabalgoity J A, Betancor L, Yim L
The Enteritidis and Dublin serovars of Salmonella enterica are phylogenetically closely related yet differ significantly in host range and virulence. S Enteritidis is a broad-host-range serovar that commonly causes self-limited gastroenteritis in humans, whereas S Dublin is a cattle-adapted serovar that can infect humans, often resulting in invasive extraintestinal disease. The mechanism underlying the higher invasiveness of S Dublin remains undetermined. In this work, we quantitatively compared the proteomes of clinical isolates of each serovar grown under gut-mimicking conditions. Compared to S Enteritidis, the S Dublin proteome was enriched in proteins linked to response to several stress conditions, such as those encountered during host infection, as well as to virulence. The S Enteritidis proteome contained several proteins related to central anaerobic metabolism pathways that were undetected in S Dublin. In contrast to what has been observed in other extraintestinal serovars, most of the coding genes for these pathways are not degraded in S Dublin. Thus, we provide evidence that S Dublin metabolic functions may be much more affected than previously reported based on genomic studies. Single and double null mutants in stress response proteins Dps, YciF, and YgaU demonstrate their relevance to S Dublin invasiveness in a murine model of invasive salmonellosis. All in all, this work provides a basis for understanding interserovar differences in invasiveness and niche adaptation, underscoring the relevance of using proteomic approaches to complement genomic studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。