Modulating the PD-1-FABP5 axis in ILC2s to regulate adipose tissue metabolism in obesity.

阅读:3
作者:Ham Jongho, Koh Jaemoon, Kim Jungeun, Cho Joo-Youn, Kim TaeSoo, Chung Doo Hyun, Bae Yong-Soo, Kim Hye Young
Obesity is closely linked to metabolic dysregulation and chronic inflammation, which significantly impact immune cell functions in adipose tissue. Type 2 innate lymphoid cells (ILC2s) have emerged as key regulators of energy homeostasis, positioning them as promising targets for obesity management. However, the mechanisms governing ILC2 activity and their therapeutic potential in obesity are not fully understood. In this study, we demonstrate that ILC2s in obese adipose tissue exhibit increased PD-1 expression, leading to an exhausted phenotype with diminished cytokine production and proliferation. Elevated osteopontin (OPN) levels in adipose tissue are associated with higher PD-1 expression on ILC2s, while adipocyte-derived PD-L1 interacts with PD-1 to further impair ILC2 functionality. Importantly, blocking PD-1 signaling prevents weight gain and alleviates obesity-related metabolic dysfunctions. In addition, the adoptive transfer of PD-1-deficient ILC2s reduces diabetic phenotypes in obese models. Mechanistically, PD-1 signaling drives metabolic reprogramming in ILC2s, affecting fatty acid uptake and energy metabolism through the downregulation of fatty acid binding protein 5 (FABP5). These results, corroborated by findings in human adipose tissue, suggest a conserved OPN-PD-1 axis. Our study identifies the OPN-PD-1-FABP5 pathway as a crucial regulator of ILC2 function in adipose tissue and presents an emerging immune cell-based therapeutic target for obesity treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。