Fresh-cut fruits and vegetables are becoming particularly popular as healthy fast-food options; however, they present challenges such as accelerated rates of decay and increased risk for contamination when compared to whole produce. Given that food safety must remain paramount for producers and manufacturers, research into novel, natural food preservation solutions which can help to ensure food safety and protect against spoilage is on the rise. In this work, we investigated the potential of using a novel protein hydrolysate, produced by the enzymatic hydrolysis of Pisum sativum (PSH), as a novel bio-preservative and its abilities to reduce populations of Escherichia coli O157:H7 after inoculation on a lettuce leaf. While unhydrolyzed P. sativum proteins show no antimicrobial activity, once digested, and purified, the enzymatically released peptides induced in vitro bactericidal effects on the foodborne pathogen at 8 mg/ml. When applied on an infected lettuce leaf, the PSH significantly reduced the number of bacteria recovered after 2 hr of treatment. PSH may be preferred over other preservation strategies based on its natural, inexpensive, sustainable source, environmentally friendly process, nontoxic nature, good batch to batch consistency, and ability to significantly reduce counts of E. coli both in vitro and in a lettuce leaf.
Preservatives from food-For food: Pea protein hydrolysate as a novel bio-preservative against Escherichia coli O157:H7 on a lettuce leaf.
阅读:4
作者:Mohan Niamh M, Zorgani Amine, Earley Leah, Chauhan Sweeny, Trajkovic Sanja, Savage John, Adelfio Alessandro, Khaldi Nora, Martins Marta
| 期刊: | Food Science & Nutrition | 影响因子: | 3.800 |
| 时间: | 2021 | 起止号: | 2021 Sep 8; 9(11):5946-5958 |
| doi: | 10.1002/fsn3.2489 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
