Lysolecithin is a performance-enhancing product for livestock. Lysolecithins contain functional phospholipids (PLs) and lysophospholipids (LPLs) and have been used in monogastric feed formulations because they can enhance lipid emulsification, digestion, and absorption (surface chemistry). Another underexplored aspect is that lysolecithin mixtures can serve as signaling via so-called nutritional gene expression-regulating action. The scope of this study was to fully understand the potential of a lysolecithin source derived from soybeans to influence intestinal nutrient transport in the intestinal tract. In this context, in vitro cell culture data with intestinal Caco-2 cells revealed that a lysolecithin-based product can significantly improve intestinal cell viability. Furthermore, a Transwell culture experiment showed that lysolecithins can significantly trigger gene expression. The most significantly affected genes could be correlated with G-coupled protein cascades. Enrichment analyses showed that amino acid transport and lipid metabolism pathways are significantly affected. Furthermore, the polarized cell culture revealed that the studied lysolecithin could affect the abundance of metabolites/nutrients in the basolateral compartment when applied apically, indicating that its action exceeds surface chemistry. In conclusion, the data on intestinal cell viability, gene expression, and metabolite abundance seem to reveal the bioactivities of lysolecithin. The latter data suggest that the specific lysolecithin source used here is more than a biosurfactant; more specifically, it seems to be a potent bioactive mixture of amphiphilic compounds triggering cell signaling pathways.
The Nutritional Gene Expression Regulation Potential of a Lysolecithin-Based Product.
阅读:20
作者:Van Hoeck Veerle, Spaepen Riet, Forier Bart
| 期刊: | Current Issues in Molecular Biology | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Jul 15; 47(7):548 |
| doi: | 10.3390/cimb47070548 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
