Background/Objectives: Herein, we demonstrate the development and characterization of ceftriaxone (CTX)-loaded liposomal nanoparticles (NPs) intended to be applicable to the management of lower respiratory tract infections (LRTIs) associated with resistant bacteria. Methods: The CTX-loaded liposomal NPs were fabricated by a thin film hydration approach. Results: The particle size of the NPs, determined by a Zetasizer, was within the range of 90-536 nm. Microscopic examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed that particles are spherical in shape and have retained their original morphology even after freeze-drying. Attenuated total reflection-Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric (TG), and powder X-ray diffraction (PXRD) spectra exhibited that CTX is incorporated into the liposomes with no possible interaction between drug and excipients. The formation of the CTX-loaded liposomal NPs was dependent on the concentrations of phospholipids, cholesterol and mannitol; however, no considerable differences were observed in entrapment efficiency and loading capacity of CTX formulations (F6-F10). Using a twin-stage impinger (TSI), the in vitro aerosolization of the formulations were carried out at a flow rate of 60 ± 5 L/min and CTX was determined by a validated HPLC method and the prepared liposomal formulations produced promising fine particle fraction (FPF) between 47 and 62%. The prepared formulation (F6) showed prolonged CTX release of 94.0% ± 5.7 and 95.9% ± 3.9 at 24 h and 48 h, respectively. The drug release followed the Hixon-Crowell model, with CTX being transported through Fickian diffusion. Conclusions: These results highlight the prepared CTX-loaded inhaled liposomal formulation would be suitable for pulmonary delivery and extend the successful antibiotic delivery strategies for the effective management of LRTIs.
Ceftriaxone-Loaded Liposomal Nanoparticles for Pulmonary Delivery Against Lower Respiratory Tract Infections: Development and Characterization.
阅读:3
作者:Panthi Vijay Kumar, Fairfull-Smith Kathryn E, Wells Timothy J, Wang Tony, Islam Nazrul
| 期刊: | Pharmaceuticals | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Mar 14; 18(3):414 |
| doi: | 10.3390/ph18030414 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
