L. vannamei has become one of the most productive species. However, it is susceptible to microbial contamination during fishing, transportation, and storage, which can lead to spoilage and quality deterioration. This study investigates the relationship between changes in the proteome of Litopenaeus vannamei (L. vannamei) muscle and quality characteristics during low-temperature storage using the tandem mass spectrometry technology of quantitative proteomics strategy. The differential expression of proteins under cold storage (4 °C, CS), partial slight freezing (-3 °C, PFS), and frozen storage (-18 °C, FS) conditions was compared with the fresh group (CK), resulting in 1572 proteins identified as differentially expressed. The purpose of this research is to identify potential biochemical markers by analyzing quality changes and relative differential proteins through searches in the UniProt database, Gene Ontology database, and Genome Encyclopedia. Correlation analysis revealed that seven DEPs were significantly related to physical and chemical indicators. Bioinformatics analysis demonstrated that most DEPs are involved in binding proteins, metabolic enzymes, and protein turnover. Additionally, some DEPs were identified as potential biomarkers for muscle decline. These findings contribute to understanding the mechanism of freshness decline in L. vannamei under low-temperature storage and the changes in muscle proteome.
Use of Tandem Mass Spectrometry Quantitative Proteomics to Identify Potential Biomarkers to Follow the Effects of Cold and Frozen Storage of Muscle Tissue of Litopenaeus vannamei.
阅读:3
作者:Chen Yu, Ning Qian, Wu Zhenzhen, Zhou Hanlin, Liao Jun, Sun Xiangyun, Lin Jing, Pang Jie
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2023 | 起止号: | 2023 Jul 31; 12(15):2920 |
| doi: | 10.3390/foods12152920 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
