Biofilms are microbial communities embedded in an extracellular polymeric matrix and display an enhanced tolerance to the action of antimicrobials. The emergence of novel functionalised nanoparticles is considered a promising avenue for the development of biofilm-specific antimicrobial technologies. However, there is a gap in the understanding of interactions between nanoparticles and the biofilm matrix. Particularly, questions are raised on how nanoparticle charge and surface groups play a role in aggregation when in contact with biofilm components. Herein we present the synthesis of four types of silica nanoparticles and undertake an analysis of their interactions with Pseudomonas fluorescens biofilm matrix. The effect of the biofilm matrix components on the charge and aggregation of the nanoparticles was assessed. Additionally, the study focused on the role of matrix proteins, with the in-depth characterisation of the protein corona of each nanoparticle by Liquid Chromatography with Tandem Mass Spectrometry experiments. The protein corona composition is dependent on the nanoparticle type; non-functionalised nanoparticles show less protein selectivity, whereas carboxylate-functionalised nanoparticles prefer proteins with a higher isoelectric point. These outcomes provide insights into the field of biofilm-nanoparticle interactions that can be valuable for the design of new nano-based targeting systems in future anti-biofilm applications.
Interactions between functionalised silica nanoparticles and Pseudomonas fluorescens biofilm matrix: A focus on the protein corona.
阅读:7
作者:Barros Caio H N, Fulaz Stephanie, Vitale Stefania, Casey Eoin, Quinn Laura
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2020 | 起止号: | 2020 Jul 23; 15(7):e0236441 |
| doi: | 10.1371/journal.pone.0236441 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
