TMEM216 Deletion Causes Mislocalization of Cone Opsin and Rhodopsin and Photoreceptor Degeneration in Zebrafish

TMEM216 缺失导致斑马鱼视锥细胞视蛋白和视紫红质定位错误以及光感受器退化

阅读:9
作者:Yu Liu, Shuqin Cao, Miao Yu, Huaiyu Hu

Conclusion

Our results indicate that TMEM216 is essential for normal genesis of outer segment disc structures, transport of outer segment materials, and survival of photoreceptors in zebrafish. These tmem216 knockout zebrafish will be useful in studying how transition zone proteins regulate photoreceptor outer segment formation and maintenance.

Methods

We have generated tmem216 knockout zebrafish by CRISPR genome editing. The impact of TMEM216 deletion on photoreceptors was evaluated by immunofluorescence staining and electron microscopy.

Purpose

Mutations in TMEM216, a ciliary transition zone tetraspan transmembrane protein, are linked to Joubert syndrome and Meckel syndrome. Photoreceptor degeneration is a prominent phenotype in Joubert syndrome. How TMEM216 contributes to photoreceptor health is poorly understood.

Results

Homozygous tmem216 knockout zebrafish died before 21 days after fertilization. Their retina exhibited reduced immunoreactivity to rod photoreceptor outer segment marker 4D2 and cone photoreceptor outer segment marker G protein subunit α transducin 2 (GNAT2). Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) revealed an increase in TUNEL-positive nuclei in the knockout retina, indicating photoreceptor degeneration. The tmem216 mutation resulted in shortened photoreceptor ciliary axoneme, as revealed by acetylated α-tubulin immunostaining. Photoreceptors in knockout zebrafish exhibited mislocalization of outer segment proteins such as rhodopsin, GNAT2, and red opsin to the inner segment and cell bodies. Additionally, electron microscopy revealed that the mutant photoreceptors elaborated outer segment with abnormal disc morphology such as shortened discs and vesicles/vacuoles within the outer segment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。