Somatic MIWI2 Hinders Direct Lineage Reprogramming From Fibroblast to Hepatocyte

体细胞 MIWI2 阻碍从成纤维细胞到肝细胞的直接谱系重编程

阅读:5
作者:Xiaojie Shi, Zipei Xiao, Francesco Zonta, Wei Wang, Yue Wan, Yu Li, Nan Wang, Yuanyuan Kuang, Mingjuan Du, Jian Dong, Ju Wang, Guang Yang

Abstract

Remodeling of the gene regulatory network in cells is believed to be a prerequisite for their lineage reprogramming. However, its key regulatory factors are not yet elucidated. In this article, we investigate the role of PIWI proteins and provide evidence that one of them, MIWI2, is elicited during transdifferentiation of fibroblasts into hepatocyte-like cells. In coincidence with the peak expression of MIWI2, we identified the appearance of a unique intermediate epigenetic state characterized by a specific Piwi-interacting RNA (piRNA) profile consisting of 219 novel sequences. Knockout of MIWI2 greatly improved the formation of the induced hepatocytes, whereas overexpression of exogenous MIWI2 completely abolished the stimulated effect. A bioinformatics analysis of piRNA interaction network, followed by experimental validation, revealed the Notch signaling pathway as one of the immediate effectors of MIWI2. Altogether, our results show for the first time that temporal expression of MIWI2 contributes negatively to cell plasticity not only in germline, but also in developed cells, such as mouse fibroblasts. Stem Cells 2019;37:803-812.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。