Modern applications, such as smart cities, home automation, and eHealth, demand a new approach to improve cloud application dependability and availability. Due to the enormous scope and diversity of the cloud environment, most cloud services, including hardware and software, have encountered failures. In this study, we first analyze and characterize the behaviour of failed and completed jobs using publicly accessible traces. We have designed and developed a failure prediction model to determine failed jobs before they occur. The proposed model aims to enhance resource consumption and cloud application efficiency. Based on three publicly available traces: the Google cluster, Mustang, and Trinity, we evaluate the proposed model. In addition, the traces were also subjected to various machine learning models to find the most accurate one. Our results indicate a significant correlation between unsuccessful tasks and requested resources. The evaluation results also revealed that our model has high precision, recall, and F1-score. Several solutions, such as predicting job failure, developing scheduling algorithms, changing priority policies, or limiting re-submission of tasks, can improve the reliability and availability of cloud services.
Analysis of Job Failure and Prediction Model for Cloud Computing Using Machine Learning.
阅读:3
作者:Jassas Mohammad S, Mahmoud Qusay H
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Mar 5; 22(5):2035 |
| doi: | 10.3390/s22052035 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
