Characterization of preclinical radio ADME properties of ARV-471 for predicting human PK using PBPK modeling.

阅读:18
作者:He Yifei, Zhu Chenggu, Lei Peng, Yang Chen, Zhang Yifan, Zheng Yuandong, Diao Xingxing
Proteolysis-targeting chimeras (PROTACs) represent a promising class of drugs that can target disease-causing proteins more effectively than traditional small molecule inhibitors can, potentially revolutionizing drug discovery and treatment strategies. However, the links between in vitro and in vivo data are poorly understood, hindering a comprehensive understanding of the absorption, distribution, metabolism, and excretion (ADME) of PROTACs. In this work, (14)C-labeled vepdegestrant (ARV-471), which is currently in phase III clinical trials for breast cancer, was synthesized as a model PROTAC to characterize its preclinical ADME properties and simulate its clinical pharmacokinetics (PK) by establishing a physiologically based pharmacokinetics (PBPK) model. For in vitro-in vivo extrapolation (IVIVE), hepatocyte clearance correlated more closely with in vivo rat PK data than liver microsomal clearance did. PBPK models, which were initially developed and validated in rats, accurately simulate ARV-471's PK across fed and fasted states, with parameters within 1.75-fold of the observed values. Human models, informed by in vitro ADME data, closely mirrored postoral dose plasma profiles at 30 mg. Furthermore, no human-specific metabolites were identified in vitro and the metabolic profile of rats could overlap that of humans. This work presents a roadmap for developing future PROTAC medications by elucidating the correlation between in vitro and in vivo characteristics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。