Characterization of preclinical radio ADME properties of ARV-471 for predicting human PK using PBPK modeling.

阅读:6
作者:He Yifei, Zhu Chenggu, Lei Peng, Yang Chen, Zhang Yifan, Zheng Yuandong, Diao Xingxing
Proteolysis-targeting chimeras (PROTACs) represent a promising class of drugs that can target disease-causing proteins more effectively than traditional small molecule inhibitors can, potentially revolutionizing drug discovery and treatment strategies. However, the links between in vitro and in vivo data are poorly understood, hindering a comprehensive understanding of the absorption, distribution, metabolism, and excretion (ADME) of PROTACs. In this work, (14)C-labeled vepdegestrant (ARV-471), which is currently in phase III clinical trials for breast cancer, was synthesized as a model PROTAC to characterize its preclinical ADME properties and simulate its clinical pharmacokinetics (PK) by establishing a physiologically based pharmacokinetics (PBPK) model. For in vitro-in vivo extrapolation (IVIVE), hepatocyte clearance correlated more closely with in vivo rat PK data than liver microsomal clearance did. PBPK models, which were initially developed and validated in rats, accurately simulate ARV-471's PK across fed and fasted states, with parameters within 1.75-fold of the observed values. Human models, informed by in vitro ADME data, closely mirrored postoral dose plasma profiles at 30 mg. Furthermore, no human-specific metabolites were identified in vitro and the metabolic profile of rats could overlap that of humans. This work presents a roadmap for developing future PROTAC medications by elucidating the correlation between in vitro and in vivo characteristics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。