SIGNIFICANCE: As fluorescence-guided surgery (FGS) gains clinical adoption, robust and experimentally validated computational models for tissue fluorescence are increasingly essential. Although there have been several developments in modeling fluorescence with Monte Carlo simulations, the scope of the experimental validation has been limited in the parameters tested and phantoms used. AIM: We aim to present and experimentally validate a graphics processing unit (GPU)-accelerated, voxel-based Monte Carlo fluorescence framework capable of modeling varying fluorophore concentrations, optical properties, and complex three-dimensional (3D) geometries. APPROACH: A two-step approach (MCX-ExEm) based on Monte Carlo eXtreme was developed for simulating fluorescence. Both commercial reference targets and custom 3D-printed phantoms with well-characterized optical properties were imaged for varying parameters-including absorption, scattering, fluorophore concentrations, and geometries-and compared against simulations. RESULTS: Strong agreement is observed between simulated and experimental fluorescence across all tested parameters. MCX-ExEm accurately captures nonlinear quenching at high fluorophore concentrations, variations driven by scattering and absorption, intensity scaling with volume, and depth-dependent attenuation and resolution. Minor deviations occur primarily under low-scattering or low-absorption regimes, where optical characterization presents greater uncertainties. CONCLUSIONS: By integrating experimentally validated simulations with a broad range of solid phantoms, this framework establishes a foundation for developing fluorescence digital twins, enabling faster and more systemic testing of fluorescence imaging systems. These findings can help accelerate the design and optimization of FGS and other fluorescence-based biomedical applications.
Toward fluorescence digital twins: multi-parameter experimental validation of fluorescence Monte Carlo simulations using solid phantoms.
阅读:6
作者:Nguyen Mayna H, LaRochelle Ethan P M, Robledo Edwin A, Ruiz Alberto J
| 期刊: | Journal of Biomedical Optics | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Dec;30(Suppl 3):S34104 |
| doi: | 10.1117/1.JBO.30.S3.S34104 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
