Parkinson's disease (PD), the second most common neurodegenerative condition, is primarily characterized by motor dysfunctions due to dopaminergic neuronal loss in the Substantia Nigra (SN), with oxidative stress playing a significant role in its progression. This study investigates the neuroprotective potential of Pelargonium graveolens (Thunb.) L'Hér leaves in a rotenone-induced PD rat model. The total ethanolic extract and its fractions, obtained via Diaion HP-20 column chromatography, were evaluated for monoamine oxidase-B (MAO-B) inhibition in vitro. The 50% methanol fraction (PG50) demonstrated the highest MAO-B inhibition (IC(50) 5.26â±â0.12 µg/ml) compared to the reference drug selegiline (IC(50) 0.021â±â0.003 µg/ml). In a rotenone-induced PD rat model, PG50 (100 mg/kg, p.o.) alleviated motor deficits (assessed via the wire hanging test), and restored norepinephrine, dopamine, and serotonin levels. PG50 and L-dopa reduced α-synuclein levels by 367.60% and 377.48%, respectively. Oxidative balance was restored with increased glutathione (23.12%) and decreased malondialdehyde (164.19%) in brain tissues. PG50 significantly reduced serum TNF-α (572.79%) and IL-6 (70.84%) levels, and improved succinate dehydrogenase (14.47%) and lactate dehydrogenase (7.74%) activities in brain tissues. Histopathological alterations in the SN were also ceased. UPLC-MS/MS analysis identified 61 metabolites, including 32 flavonoids, 13 phenolic acids, 7 coumarins, 5 phenolic glycosides, and 4 dicarboxylic acids, with in silico docking showing strong MAO-B binding by methoxylated flavonoids like methoxyluteolin dimethyl ether (docking score:â-â8.0625 kcal/mol), surpassing that of safinamide (-â8.2615 kcal/mol). These findings suggest that P. graveolens holds promise as a neuroprotective agent against rotenone-induced PD.
Pelargonium graveolens Attenuates Rotenone-Induced Parkinson's Disease in a Rat Model: Role of MAO-B Inhibition and In Silico Study.
阅读:3
作者:Merghany Rana M, El-Sawi Salma A, Naser Asmaa F Aboul, Salem Mohamed A, Ezzat Shahira M, Moustafa Sherifa F A, Meselhy Meselhy R
| 期刊: | Molecular Neurobiology | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Jun;62(6):7664-7681 |
| doi: | 10.1007/s12035-025-04727-6 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
