The salty tango of brine composition and UV photochemistry effects on Halobacterium salinarum cell envelope biosignature preservation.

阅读:3
作者:Bourmancé Lucas, Marie Arul, Puppo Rémy, Brûlé Sébastien, Schaeffer Philippe, Toupet Maud, Nitsche Ruben, Elsaesser Andreas, Kish Adrienne
Hypersaline environments, including brines and brine inclusions of evaporite crystals, are currently of great interest due to their unique preservation properties for the search for terrestrial and potentially extraterrestrial biosignatures of ancient life. However, much is still unclear about the specific effects that dictate the preservation properties of brines. Here we present the first insights into the preservation of cell envelope fragments in brines, characterizing the relative contributions of brine composition, UV photochemistry, and cellular macromolecules on biosignature preservation. Cell envelopes from the model halophile Halobacterium salinarum were used to simulate dead microbial cellular remains in hypersaline environments based on life as we currently know it. Using different Early Earth and Mars analogue brines, we show that acidic and NaCl-dominated brine compositions are more predisposed to preserving complex biosignatures from UV degradation, but that the composition of the biological material also influences this preservation. Furthermore, a combinatory effect between chaotropicity and photochemistry occurs, with the relative importance of each being brine-specific. These results provide an experimental framework for biosignature detection in hypersaline environments, emphasizing the need for laboratory simulations to evaluate preservation properties of each potential brine environment, on Earth and elsewhere in the solar system.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。