Dual Residual Denoising Autoencoder with Channel Attention Mechanism for Modulation of Signals.

阅读:3
作者:Duan Ruifeng, Chen Ziyu, Zhang Haiyan, Wang Xu, Meng Wei, Sun Guodong
Aiming to address the problems of the high bit error rate (BER) of demodulation or low classification accuracy of modulation signals with a low signal-to-noise ratio (SNR), we propose a double-residual denoising autoencoder method with a channel attention mechanism, referred to as DRdA-CA, to improve the SNR of modulation signals. The proposed DRdA-CA consists of an encoding module and a decoding module. A squeeze-and-excitation (SE) ResNet module containing one residual connection is modified and then introduced into the autoencoder as the channel attention mechanism, to better extract the characteristics of the modulation signals and reduce the computational complexity of the model. Moreover, the other residual connection is further added inside the encoding and decoding modules to optimize the network degradation problem, which is beneficial for fully exploiting the multi-level features of modulation signals and improving the reconstruction quality of the signal. The ablation experiments prove that both the improved SE module and dual residual connections in the proposed method play an important role in improving the denoising performance. The subsequent experimental results show that the proposed DRdA-CA significantly improves the SNR values of eight modulation types in the range of -12 dB to 8 dB. Especially for 16QAM and 64QAM, the SNR is improved by 8.38 dB and 8.27 dB on average, respectively. Compared to the DnCNN denoising method, the proposed DRdA-CA makes the average classification accuracy increase by 67.59∼74.94% over the entire SNR range. When it comes to the demodulation, compared with the RLS and the DnCNN denoising algorithms, the proposed denoising method reduces the BER of 16QAM by an average of 63.5% and 40.5%, and reduces the BER of 64QAM by an average of 46.7% and 18.6%. The above results show that the proposed DRdA-CA achieves the optimal noise reduction effect.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。